
MANA for MPI
MPI-Agnostic Network-Agnostic Transparent Checkpointing

Rohan Garg, *Gregory Price, and Gene Cooperman
Northeastern University

Why checkpoint, and why transparently?

Whether for maintenance, analysis, time-sharing, load balancing, or fault tolerance
HPC developers require the ability to suspend and resume computations.

Two general forms of checkpointing solutions

1. Transparent - No or Low development overhead
2. Application-specific - Moderate to High development overhead

HPC Applications exist on a spectrum

Developers apply technologies based on where they live in that spectrum.

Puzzle
Can you solve checkpointing on...

 Cray MPI over Infiniband

And restart on…

 MPICH over TCP/IP

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

4

8

5

10

6

12

7

14

1

3

2

9

11

13

15

16

4 Nodes, 4 Cores/Ranks per Node 8 Nodes, 2 Cores/Ranks per Node

Shared
Memory

Shared
Memory

Cross-Cluster Migration
It is now possible to checkpoint on

 Cray MPI over Infiniband

And restart on…

 MPICH over TCP/IP

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

4

8

5

10

6

12

7

14

1

3

2

9

11

13

15

16

4 Nodes, 4 Cores/Ranks per Node 8 Nodes, 2 Cores/Ranks per Node

Shared
Memory

Shared
Memory

The Problem

How do we best transparently checkpoint an
MPI Library?

The Answer

Don’t. :]

HPC Checkpointing Spectrum

Low vs. High End: Defined by level of effort, funding, and time frame.

 Short term Long Term

Low Investment High Investment

Ready-made solution Hand-Rolled Solution

 Limit Cost / Effort Maximize Results

Terms of the project dictate the technology employed

Transparent Checkpointing

Transparency and Agnosticism

Transparency

1. No re-compilation and no re-linking of application
2. No re-compilation of MPI
3. No special transport stack or drivers

Agnosticism

1. Works with any libc or Linux kernel
2. Works with any MPI implementation (MPICH, CRAY MPI, etc)
3. Works with any network stack (Ethernet, Infiniband, Omni-Path, etc).

Alas, poor transparency, I knew him Horatio...

Transparent checkpointing could die a slow, painful death.

1. Open MPI Checkpoint-Restart service (Network Agnostic; cf. Hursey et al.)
○ MPI implementation provides checkpoint service to the application.

2. BLCR
○ Utilizes kernel module to checkpoint local MPI ranks

3. DMTCP (MPI Agnostic)
○ External program that wraps MPI for checkpointing.

These, and others, have run up against a wall:

MAINTENANCE

The M x N maintenance penalty

MPI:

● MPICH
● OPEN MPI
● LAM-MPI
● CRAY MPI
● HP MPI
● IBM MPI
● SGI MPI
● MPI-BIP
● POWER-MPI
● ….

Interconnect:

● Ethernet
● InfiniBand
● InfiniBand + Mellanox
● Cray GNI
● Intel Omni-path
● libfabric
● System V Shared Memory
● 115200 baud serial
● Carrier Pigeon
● ….

The M x N maintenance penalty

MPI:

● MPICH
● OPEN-MPI
● LAM-MPI
● CRAY MPI
● HP MPI
● IBM MPI
● SGI MPI
● MPI-BIP
● POWER-MPI
● ….

Interconnect:

● Ethernet
● InfiniBand
● InfiniBand + Mellanox
● Cray GNI
● Intel Omni-path
● libfabric
● System V Shared Memory
● 115200 baud serial
● Carrier Pigeon
● ….

Network Agnostic

The M x N maintenance penalty

MPI:

● MPICH
● OPEN-MPI
● LAM-MPI
● CRAY MPI
● HP MPI
● IBM MPI
● SGI MPI
● MPI-BIP
● POWER-MPI
● ….

Interconnect:

● Ethernet
● InfiniBand
● InfiniBand + Mellanox
● Cray GNI
● Intel Omni-path
● libfabric
● System V Shared Memory
● 115200 baud serial
● Carrier Pigeon
● ….

MPI and Network Agnostic

The problem stems from checkpointing both the MPI coordinator and the MPI lib.

MANA: MPI-Agnostic, Network-Agnostic

MPI Coordinator

MPI Rank

MPI Rank

MPI Rank

MPI Rank

Node 1 Node 2

The problem stems from checkpointing MPI - both the coordinator and the library.

Connections

Groups

Communicators

Link State

MANA: MPI-Agnostic, Network-Agnostic

MPI Coordinator

MPI Rank

MPI Rank

MPI Rank

MPI Rank

Node 1 Node 2

Step 1: Drain the Network

Achieving Agnosticism

MPI Coordinator

MPI Rank

MPI Rank

MPI Rank

MPI Rank

Node 2Node 1

Chandy-Lamport
Algorithm

As demonstrated by Hursey et al., abstracting by “MPI Messages” allows for Network Agnosticism.

Inspired by Chandy-Lamport

Chandy-Lamport - Common mechanism of recording a consistent global state

Usage is established among MPI checkpointing solutions (e.g. Hursey et. al.)

1. Count the number of messages sent
2. Count the number of messages received or drained
3. When they’re equivalent, the network is drained and safe to checkpoint.

Checkpointing Message Operations

● Apply Chandy-Lamport outside the MPI library, checkpointing MPI API calls.
● Can be naively applied to point-to-point communications

○ Send, Recv, iSend, iRecv, etc.

● Collectives (Scatter / Gather) could not be naively supported
○ Collectives can produce un-recordable MPI Library and Network events.
○ Can cause straggler and starvation issues when applied naively

Rank 1

Rank 2

Rank 3

Inside Collective

Inside Collective

Straggler

Checkpointing Collective Operations

Solution: Two-phase collectives

1. Preface all collectives with a trivial barrier
2. When the trivial barrier is completed, call the original collective

Rank 1

Rank 2

Rank 3

Inside Barrier

Inside Barrier

Straggler

Trivial Barrier Collective

Checkpointing Collective Operations

Solution: Two-phase collectives

1. Preface all collectives with a trivial barrier
2. When the trivial barrier is completed, call the original collective

Rank 1

Rank 2

Rank 3
Original Collective

Original Collective

Original Collective

Trivial Barrier Collective

Checkpointing Collective Operations

Solution: Two-phase collectives

1. Preface all collectives with a trivial barrier
2. When the trivial barrier is completed, call the original collective

Rank 1

Rank 2

Rank 3

Trivial Barrier Collective
Collective
Complete

Checkpointing Collective Operations

Solution: Two-phase collectives

Rank 1

Rank 2

Rank 3

Trivial Barrier
Collective

Begins
Collective
Complete

Checkpoint Disabled

Checkpointing Collective Operations

Solution: Two-phase collectives

This prevents deadlock conditions

Rank 1

Rank 2

Rank 3

Trivial Barrier
Collective

Begins
Collective
Complete

Checkpoint Disabled

Checkpointing Collective Operations

Solution: Two-phase collectives

This prevents deadlock conditions
(Additional logic to avoid starvation)

Rank 1

Rank 2

Rank 3

Trivial Barrier
Collective

Begins
Collective
Complete

Checkpoint Disabled

Step 2: Discard the network

Achieving Agnosticism

MPI Coordinator

MPI Rank

MPI Rank

MPI Rank

MPI Rank

Node 2Node 1

Problems:

● MPI Implementation Specific
● Contains MPI network state

Solution: IsolationCheckpointing the rank is simpler… right?

Checkpointing A Rank

MPI Rank

MPI Application

MPI Library

LIBC and friends
● Required by MPI and Application
● Platform dependant

● Grouping information
● Opaque MPI Objects

● Heap Allocations

MPI Application

MPI Library

MPI Proxy Library
MPI Library

LIBC and friends

Terminology

Isolation - The “Split-Process” Approach

Upper-Half program Checkpoint and Restore

Lower-Half program Discard and Re-initialize

Single Memory Space

Standard C Calling Conventions
No RPC involved

MPI Application

MPI Library

MPI Proxy Library

LIBC and friends

Re-initializing the network

● Contains MPI network state ● Grouping information
● Opaque MPI Objects

Runtime
● Record Configuration Calls
● Initialize, Grouping, etc

Checkpoint
● Drain Network

Restart
● Replay Configuration
● Buffer Drained Messages

MPI Application

Config and Drain Info

MPI Library

MPI Proxy Library

LIBC and friends

Isolation

MPI Application

Config and Drain Info

Problem:

Heap is a shared resource MPI Application

Config and Drain Info

LIBC and friends

Upper Half:
Persistent Data

Lower Half
Ephemeral Data

MANA interposes on sbrk and malloc
to control where allocations occur

Upper Half:
Persistent Data

Lower Half
Ephemeral Data

MPI Library

MPI Proxy Library

LIBC and friends

MPI Agnosticism Achieved

MPI Application

Config and Drain Info

LIBC and friends

Upper Half:
Persistent Data

Lower Half
Ephemeral Data

MPI Agnosticism Achieved

MPI Application

Config and Drain Info

LIBC and friends

Lower half data can be replaced by
new and different implementations
of MPI and related libraries.

*Special care must be taken when
replacing upper half libraries

Step 1: Drain the Network

Checkpoint Process

MPI Coordinator

MPI Rank

MPI Rank

MPI Rank

MPI Rank

Node 2Node 1

Step 1: Drain the Network
Step 2: Checkpoint Upper-Half

Checkpoint Process

MPI Application

Config and Drain Info

LIBC and friends

MPI Rank

Step 1: Restore Lower-Half

MPI Library

MPI Proxy Library

LIBC and friends

Restart Process

Lower-half components may be replaced

Step 1: Restore Lower-Half
Step 2: Re-initialize MPI

Restart Process

● MPI_INIT
● Replay Configuration

Naturally Optimized

MPI Library

MPI Proxy Library

LIBC and friends Lower-half components may be replaced

Step 1: Restore Lower-Half
Step 2: Re-initialize MPI
Step 3: Restore Upper-Half

MPI Library

MPI Proxy Library

LIBC and friends

Restart Process

MPI Application

Config and Drain Info

LIBC and friends

MPI Rank

● MPI_INIT
● Replay Configuration

Naturally Optimized

MPI Rank # assigned by MPI_Init
used to select checkpoint file for
restoring the upper half.

This avoids the need to virtualize
MPI Rank numbers. Lower-half components may be replaced

How to transparently checkpoint MPI App+MPI Lib?

Answer:

Don’t Checkpoint the MPI Library

MPI Application

Config and Drain Info

LIBC and friends

Puzzle
Can you solve checkpointing on...

 Cray MPI over Infiniband

And restart on…

 MPICH over TCP/IP

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

4

8

5

10

6

12

7

14

1

3

2

9

11

13

15

16

4 Nodes, 4 Cores/Ranks per Node 8 Nodes, 2 Cores/Ranks per Node

YES

NEW: Cross-Cluster MPI Application Migration

Traditionally, migration across disparate clusters was not feasible.

● Different MPI packages across clusters
● Highly optimized configurations tied to local cluster (Caches, Cores/Node)
● Overhead of checkpointing entire MPI state is prohibitive

Overhead of migrating under MANA:

● 1.6% runtime overhead after migration.*

* Linux kernel 5.3 patch https://lwn.net/Articles/769355/ reduces overhead to 0.6%

https://lwn.net/Articles/769355/

But what about single-cluster overhead?

Application Benchmarks:

● miniFE, HPCG
○ nearly 0% runtime overhead

● GROMACS, CLAMR, LULESH
○ 0.6% runtime overhead*

Memory Overhead

● Copied upper-half system libraries: static 26MB on all experiments
● Reduction in overall checkpointed data due to discarding lower-half memory.

* requires Linux kernel patch https://lwn.net/Articles/769355/

https://lwn.net/Articles/769355/

Checkpoint-Restart Overhead

Checkpoint Data Size

● GROMACS - 64 Ranks over 2 Nodes: 5.9GB
● HPCG - 2048 ranks over 64 nodes: 4TB
● Largely dominated by memory used by benchmark program.

Checkpoint Time

● Largely dominated by disk-write time
● “Stragglers” - a single rank takes much longer to checkpoint than others.

Restart Time

● MPI State reconstruction represented < 10% of total restart time.

Questions?

